
A Novel Approach to Ocular Gene Therapy: Evaluation of Suprachoroidally Administered Non-Viral DNA Nanoparticles in Rabbits

Szilárd Kiss, MD

Division Chief, Retina Service Director of Clinical Research Director of Compliance Associate Professor of Ophthalmology Weill Cornell Medical College Associate Attending Physician New-York-Presbyterian Hospital

Disclosures

- Consultant and Research Funding Adverum, RegenXBio, Spark
- IP related gene therapy

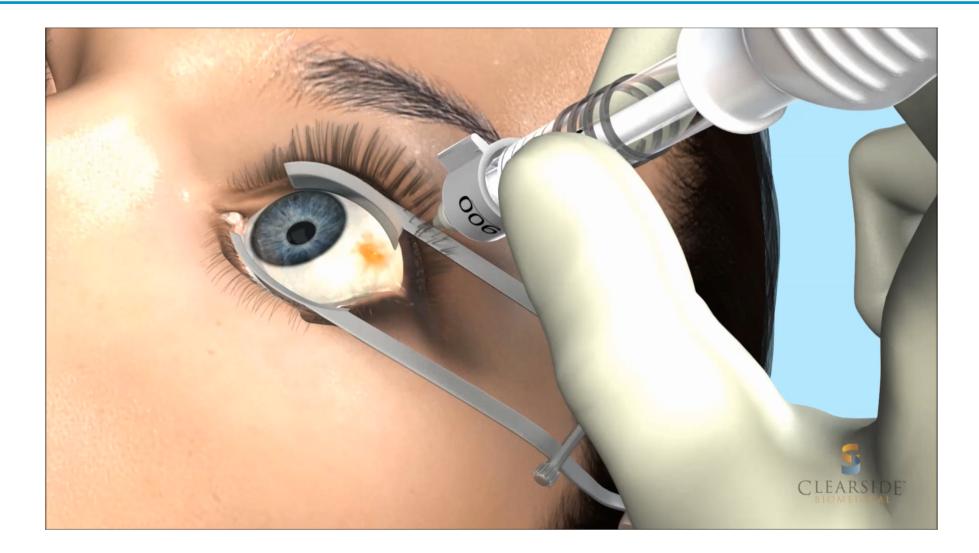
DNA nanoparticles offers the potential for safe, efficacious, and repeat dosing ocular gene therapy

Potential advantages: DNA Nanoparticles versus viral vector-mediated gene therapy

- Unlike AAV (payload capacity of 5 kb), can transfer large genes (up to ~20 kb)
- Safety
 - Non-immunogenic, without viral capsid proteins or pre-existing immunity
 - Potential for repeat and greater dosing
- Efficacy in numerous ocular animal models
 - Higher doses may be used to enhance transfection
- Manufacturing
 - Simpler than viral-based gene therapy

Potential disadvantages: DNA Nanoparticles versus viral vector-mediated gene therapy

- Durability
 - May not represent one time therapy


Suprachoroidal (SC) injection offers the potential for safe, targeted, and efficient ocular gene therapy

- Targeted treatment of posterior tissues possible via SC injection
 - Spread of injectate flows circumferentially and posteriorly
- Safety
 - Avoids the risks of sub-retinal surgery
 - Does not require detachment of the photoreceptors from the RPEs, without associated risk of iatrogenic injection to already compromised disordered retina
 - SC injection procedure training is minimal

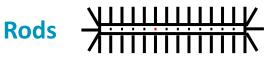
Access to care

- Does not require specialized gene therapy surgery treatment centers
- In-office SC injection procedure is less expensive than surgical procedures
- Procedure time is significantly less than standard sub-retinal procedure

Suprachoroidal Injection as a Novel Delivery Method

Evaluation of Suprachoroidally Injected DNPs in Rabbits

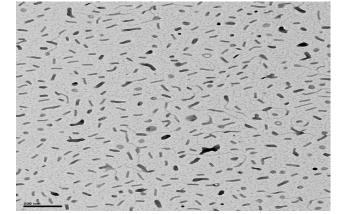
Key Questions


- Does SC injection potentially facilitate effective administration of non-viral DNP gene therapy? •
- Does SC injection potentially fulfill an unmet need? Can sub-retinal surgery be avoided? ٠

Study Objective

Evaluate the safety, tolerability, and retinal cell transfection following SC injection of DNPs in NZW rabbits

Ellipsoids



Colloidally stable DNPs Suspended in Saline

DNA

modified polylysine peptides formulated with polyethylene glycol (PEG)

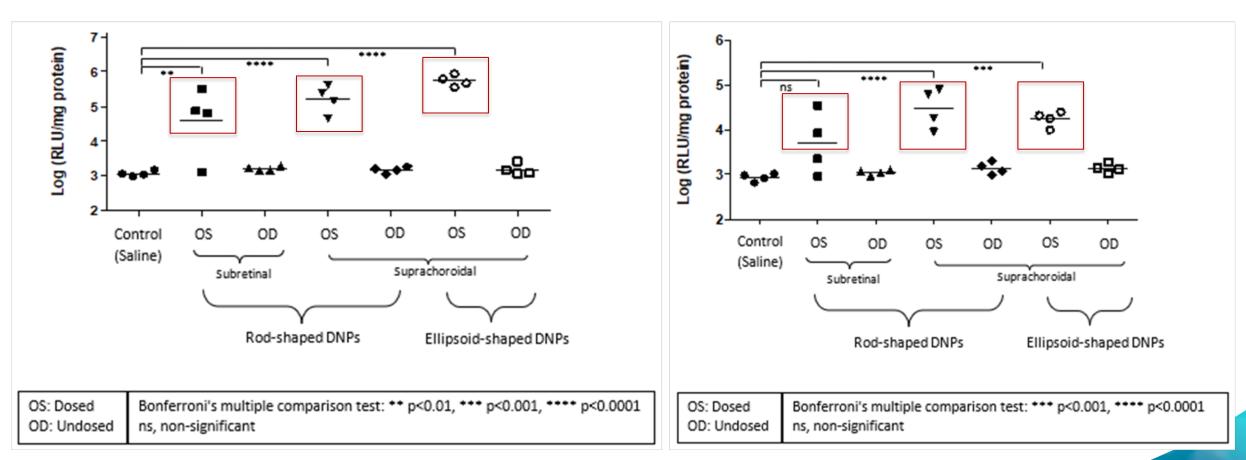
Colloidally stable DNPs Suspended in Saline

8-10 nm in diameter

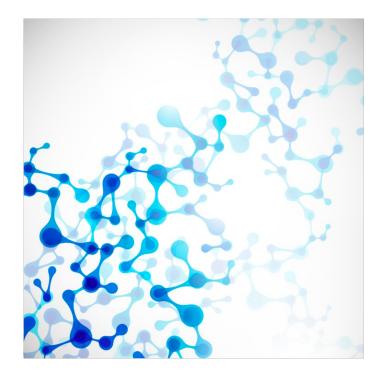
SC Injection of DNPs in Rabbits

Design

- Four animals per group injected into the right eye only
- Ophthalmic examinations Days 0, 1, and 7:
 - Assessed surface morphology, anterior segment inflammation, IOP and ERG
- One-week post-injection:
 - Eyes enucleated, choroid and retina separated, processed for evaluation of luciferase activity


	Groups	Test article	Route of Administration (OS only)	Volume
1		Vehicle	SC Injection	100 μL
2		Ellipsoid DNPs Luciferase	SC Injection	100 μL
3	}///////K	Rod DNPs Luciferase	SC Injection	100 μL
4	****	RodDNPs Luciferase	Sub-retinal injection	50 μL

DNA Nanoparticles Transfect the Retina and Choroid


Non Viral-Luciferase, Rabbit CHOROID

Non Viral-Luciferase, Rabbit RETINA

Study Summary

- Luciferase activity observed in the retina and choroid of ALL eyes that received SC injection of DNPs
- SC injection of luciferase DNPs produced activity comparable to that seen from subretinal injections of luciferase DNPs
- SC injections on DNPs were generally well-tolerated across groups; no significant abnormalities observed on ophthalmic exams or ERGs

The Future of SC Injections of DNA Nanoparticles

• Additional experiments needed

- Evaluate SC injection in non-human primates
- Evaluate delivery of a therapeutic transgene
- Why is this important?
 - Safety
 - SC injection of DNPs may address an unmet need in ocular gene delivery
 - Non-immunogenic, potential for repeat doing

Efficacy

- Higher doses may be used to enhance transfection
 - Sub-retinal procedure is 5-10 times more efficient in delivery than intravitreal injections, but has shortcomings that may be overcome with SC injections of DNPs
- DNPs can transfer large genes which may allow for gene therapy in the most common inherited retinal diseases (IRDs) such as Stargardt disease and Usher syndrome
- SC injections of DNPs offer the potential for a safer and efficient delivery method

THANK YOU