Post Hoc Analysis of Suprachoroidal CLS-TA versus Real World Rescue Therapies for Uveitic Macular Edema: Safety and Visual Function

Steven Yeh, MD¹

Colette Hall, MD² Thomas A. Ciulla, MD, MBA²

39th Annual Scientific Meeting October 8 – 12, 2021

1. Truhlsen Eye Institute, University of Nebraska Medical Center 2. Clearside Biomedical, Inc.

Financial Disclosures

Yeh: **Consultant / Advisory Board** Bausch and Lomb Clearside Biomedical Adverum Regenxbio

ard Grant Support

National Institutes of Health (R01 EY029594) Woodruff Health Sciences Center Synergy Grant Macula Society Retina Research Award Stanley M. Truhlsen Family Foundation

Hall & Ciulla: Clearside Biomedical, Inc. (Employee & Shareholder)

PEACHTREE: Phase 3, Randomized, Controlled, Double-Masked, Multicenter Trial

CLS-TA: Proprietary triamcinolone acetonide for suprachoroidal injection

The Suprachoroidal Space (SCS) Targeted and Compartmentalized Delivery

Key Inclusion and Exclusion Criteria

Inclusion

- Diagnosis of macular edema with central subfield thickness ≥300 microns on SD-OCT
- Noninfectious uveitis of any associated diagnosis/etiology
- Any anatomic location: anterior, intermediate, posterior and panuveitis
- Visual acuity: 20/800 to 20/40 (≥5 to ≤70 ETDRS letters)

Exclusion

- Any active ocular disease or infection in the study eye other than uveitis
- Intraocular pressure >22 mmHg or uncontrolled glaucoma; patients ≤22 mmHg could be on up to 2 IOP-lowering medications

Subjects could have active or controlled uveitis at enrollment

PEACHTREE: Met Primary Efficacy Endpoint

Primary Endpoint: Subjects gaining ≥15 BCVA letters from baseline at Week 24, %

Intention-to-treat population; Last Observation Carried Forward imputation.

The p-value is based on a Cochran-Mantel-Haenszel test for general association between treatment and response with stratification by country.

IOP-Related Events Not Temporally Associated with the Injection Procedure	CLS-TA N = 96	Control N = 64
Elevated IOP adverse events	11 (11.5%)	10 (15.6%)
IOP elevation ≥10 mmHg change from baseline at any visit*	9 (9.4%)	7 (10.9%)
IOP elevation ≥30 mmHg absolute reading at any post baseline visit*	5 (5.2%)	4 (6.3%)
Given any additional IOP-lowering medication	7 (7.3%)	6 (9.4%)
Any surgical intervention for an elevated IOP Adverse Event	0	0

One serious ocular AE

- Retinal detachment 8 weeks after CLS-TA, in different quadrant from injection
- Deemed unrelated to study drug by the investigator

No cases of endophthalmitis or choroidal detachment

Comparable cataract rate: 7.3% (7/96) in the CLS-TA arm vs. 6.3% (4/64) in the sham arm

Safety population; includes patients in the control group who received rescue medication *Based on elevated intraocular pressure adverse reactions

Rescue Therapy Rates: CLS-TA (13.5%) vs. Control (71.8%)

Most Targeted (Localized) Subsequent Medication* Used Rates, CLS-TA vs. Control

*Rescue medications classified by most targeted type of therapy used during study, were:

Intravitreal Corticosteroid > Periocular corticosteroid > Topical Corticosteroid > Systemic Corticosteroid > Topical NSAID

Post-Hoc Analysis.

Sub-Analysis by Rescue Status in PEACHTREE

Purpose: To compare outcomes between CLS-TA and real-world rescue therapies **Methods:** VA and safety in unrescued CLS-TA versus rescued control group

Two (2) subgroups analyzed:

	Unrescued	Rescued
CLS-TA	n=83/96 (86.5%)	n=13/96 (13.5%)
Control	n=18/64 (28.1%)	n=46/64 (71.9%)

Visual acuity in unrescued CLS-TA: Greater mean BCVA and more 3-line gainers at week 24

≥ 15 Letter Improvement from Baseline in BCVA at Week 24

Significantly greater mean reduction in CST was observed for unrescued CLS-TA subjects versus rescued control subjects

<u>At Week 24:</u> CST reduction* in	
Unrescued CLS-TA subjects Rescued control subjects	= 174.0 μm = 148.5 μm

(95% CI for difference -88.2 to -2.0 μm, P=0.040)

*Subjects who completed the study with gradable images

Safety and Adverse Events

	Unrescued CLS-TA n = 83	Rescued Control n = 46
% of subjects with ≥1 TEAE	48.2%	63.0%
AEs related to elevated IOP	10.8%	21.7%
Incidence of Cataract	4.8%	8.7%
IOP-related surgical interventions	None	None

Conclusion

- CLS-TA subjects vs. Rescued control subjects:
 - Significantly greater reduction in CST
 - Trended towards greater BCVA improvement
 - Lower incidence of IOP elevation and cataract
- Post hoc analysis represents a "real world" mix of rescue treatments, with limitations in terms of sample size and variable rescue treatment