The potential for treatment of noninfectious uveitis using a suprachoroidal approach

Robert Wang, MD
Texas Retina Associates
Acknowledgments

• Phase 1/2 and Phase 2 uveitis trial investigators
Suprachoroidal injection in development

• Potentially useful approach for the treatment of ocular conditions

• Novel technique
 – 30G needle (approximately 1000 micron in length)
 – Proprietary microinjector syringe

• Proposed benefits
 – High bio-availability in target tissues\(^1\)
 – Sparing anterior segment might result in fewer ocular side effects\(^2\)
 – Potential for longer duration\(^2\)

2. Noronha G. Using suprachoroidal administration as an approach to treat noninfectious uveitis – from concept through clinical data. ISOPT 2015 Clinical Conference proceedings. Published March 2016
Precise access to posterior areas of the eye via suprachoroidal injection
Rationale for the suprachoroidal approach

- **Preclinical data showing potential**
 - Ocular distribution study showing high amounts of drug in the choroid and retina compared to intravitreal injection in a rabbit PK model
 - Same study showing relative sparing of the anterior segment including lens

- **Early clinical efforts**
 - Phase 1/2 and Phase 2 data showing robust efficacy
 - Both clinical trials showing no increases in IOP

- **Injection approach/personal experiences**
Preclinical rabbit model: 3 month study of ocular distribution following injection of TA

Administration of TA to the eye using suprachoroidal injection provided high amounts of drug in the choroid and the retina, compared to that seen from intravitreal dosing.

There is over 10X the amount of TA remaining in the choroid and retina following suprachoroidal injection compared to intravitreal.
Same experiment: evaluation of anterior areas of the eye

The anterior segment is relatively spared following suprachoroidal dosing when compared to intravitreal dosing.

Aqueous Humor

- Concentration (ng/mL)
- Time, days: 1, 14, 28, 56, 91

Iris-Ciliary Body

- Concentration (ng/mL)
- Time, days: 1, 14, 28, 56, 91

Graphs

- SCS (solid bars)
- IVT (hatched bars)
TA levels in the lens and in the vitreous

Low amounts of drug are found in the lens and the vitreous following suprachoroidal dosing

Lens

- **Concentration (ng/mL)**
- Time, days: 1, 14, 28, 56, 91
- SCS, IVT

Vitreous

- **Concentration (ng/mL)**
- Time, days: 1, 14, 28, 56, 91
- SCS, IVT
Patient experience

• Easier than previous shots
 – STK, Ozurdex
 – Same comfort for most for intravitreal injection with a 30 gauge needle
 – Few with “pressure” sensation

• Rapid vision improvement

• All but one patient would do it again
Efficacy/injection procedure

- Seems to act just as rapidly as an intraocular steroid shot

- Long duration of action. Some patients have not had a return of macular edema

- No patients with cataract nor glaucoma thus far

- Theoretically no chance of endophthalmitis/retinal tears

- Injection technique is as easy and rapid as intraocular anti-VEGF injection
 - no resistance
 - Key to stay perpendicular
Phase 1/2 study in patients with noninfectious uveitis

Open label, multi-center study

- Patients with noninfectious uveitis, and
 - Vitreous haze ≥ 1.5 or macular edema $>310 \mu m$ on SD-OCT
 - BCVA in each eye +1.0 logMAR or better (20/200 Snellen equivalent) by ETDRS

- Single suprachoroidal injection of TA to one (study) eye
 - Patients were observed for 26 weeks post treatment
 - 8 subjects received a single unilateral suprachoroidal injection of TA and followed for 26 wks
Phase 1/2 study – efficacy; changes from baseline

CHANGE FROM BASELINE

<table>
<thead>
<tr>
<th>Month</th>
<th>Change from baseline in letters read</th>
</tr>
</thead>
<tbody>
<tr>
<td>Month 1</td>
<td>11</td>
</tr>
<tr>
<td>Month 2</td>
<td>13</td>
</tr>
<tr>
<td>Month 6</td>
<td>13.5</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Month</th>
<th>Change from baseline in retinal thickness (μm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Month 1</td>
<td>-152</td>
</tr>
<tr>
<td>Month 2</td>
<td>-154</td>
</tr>
<tr>
<td>Month 6</td>
<td>-107</td>
</tr>
</tbody>
</table>
Phase 1/2 Study – Changes in IOP from baseline

No increases in IOP were observed; no one received IOP lowering medication;
Phase 2: controlled, masked, randomized study met primary endpoint

- To be eligible for the study, non-infectious uveitis patients needed to have ME >310 µm
 All uveitis disease etiologies and all geographic locations of uveitis were allowed

Single suprachoroidal injection of CLS-TA (4 mg; 100 µL) to the study eye
Patients were followed for 2 months – Steve Yeh presented data this morning

Intent-to-treat (ITT) population: 4.0 mg dose N=16

<table>
<thead>
<tr>
<th>Visit</th>
<th>Central subfield thickness (CST)</th>
<th>4.0 mg</th>
</tr>
</thead>
<tbody>
<tr>
<td>Month 1</td>
<td>≥ 20% reduction in CST</td>
<td>9</td>
</tr>
<tr>
<td>CST <310 microns</td>
<td></td>
<td>9</td>
</tr>
<tr>
<td>Month 2</td>
<td>≥ 20% reduction in CST</td>
<td>11</td>
</tr>
<tr>
<td>CST <310 microns</td>
<td></td>
<td>9</td>
</tr>
</tbody>
</table>

Mean change in retinal thickness from baseline (microns)

-135 p=0.0056
-125
-120
-115
-110
-105
-100
-95
-90
-85
-80
-75
-70
-65
-60
-55
-50
-45
-40
-35
-30
-25
-20
-15
-10
-5
0

p= 0.0017
Phase 2: IOP changes

No patient showed steroid related increases in IOP in either trial
No IOP lowering medication was required or used
In my view, the injection of TA via suprachoroidal injection is well tolerated in uveitis patients

- **Potential for safety advantages:**
 - No IOP increases attributable to steroid in both completed studies in uveitis patients

- **Efficacy advantages:**
 - Significant improvements in anatomy by OCT
 - Significant improvements in BCVA
 - Improvements in other signs of uveitis: anterior chamber cells, flare and vitreous haze

Suprachoroidal injection based treatments are still in development

Safety, applicability across diseases, other types of pharmacological treatments including biologics and genes, other advantages or disadvantages, other unknowns

Clinical and nonclinical data taken together support the development of suprachoroidally injected CLS-TA for the treatment of [macular edema due to] noninfectious uveitis