A Novel Approach to Ocular Gene Therapy: Evaluation of Suprachoroidally Administered Non-Viral DNA Nanoparticles in Rabbits

Szilárd Kiss, MD
Division Chief, Retina Service
Director of Clinical Research
Director of Compliance
Associate Professor of Ophthalmology
Weill Cornell Medical College
Associate Attending Physician
New-York-Presbyterian Hospital
Disclosures

- Consultant and Research Funding – Adverum, RegenXBio, Spark
- IP related gene therapy
DNA nanoparticles offers the potential for safe, efficacious, and repeat dosing ocular gene therapy

Potential advantages: DNA Nanoparticles versus viral vector-mediated gene therapy

• Unlike AAV (payload capacity of 5 kb), can transfer large genes (up to ~20 kb)

• Safety
 • Non-immunogenic, without viral capsid proteins or pre-existing immunity
 • Potential for repeat and greater dosing

• Efficacy in numerous ocular animal models
 • Higher doses may be used to enhance transfection

• Manufacturing
 • Simpler than viral-based gene therapy

Potential disadvantages: DNA Nanoparticles versus viral vector-mediated gene therapy

• Durability
 • May not represent one time therapy
Suprachoroidal (SC) injection offers the potential for safe, targeted, and efficient ocular gene therapy

- **Targeted treatment** of posterior tissues possible via SC injection
 - Spread of injectate flows circumferentially and posteriorly

- **Safety**
 - Avoids the risks of sub-retinal surgery
 - Does not require detachment of the photoreceptors from the RPEs, without associated risk of iatrogenic injection to already compromised disordered retina
 - SC injection procedure training is minimal

- **Access to care**
 - Does not require specialized gene therapy surgery treatment centers
 - In-office SC injection procedure is less expensive than surgical procedures
 - Procedure time is significantly less than standard sub-retinal procedure
Suprachoroidal Injection as a Novel Delivery Method
Evaluation of Suprachoroidally Injected DNPs in Rabbits

Key Questions

- Does SC injection potentially facilitate effective administration of non-viral DNP gene therapy?
- Does SC injection potentially fulfill an unmet need? Can sub-retinal surgery be avoided?

Study Objective

Evaluate the safety, tolerability, and retinal cell transfection following SC injection of DNPs in NZW rabbits.

- **DNA** + modified polylysine peptides formulated with polyethylene glycol (PEG)
- 8-10 nm in diameter
- Colloidal stability DNPs Suspended in Saline

![Ellipsoids](image1.png)

![Rods](image2.png)
SC Injection of DNPs in Rabbits

Design
- Four animals per group injected into the right eye only
- Ophthalmic examinations Days 0, 1, and 7:
 - Assessed surface morphology, anterior segment inflammation, IOP and ERG
- One-week post-injection:
 - Eyes enucleated, choroid and retina separated, processed for evaluation of luciferase activity

<table>
<thead>
<tr>
<th>Groups</th>
<th>Test article</th>
<th>Route of Administration (OS only)</th>
<th>Volume</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Vehicle</td>
<td>SC Injection</td>
<td>100 µL</td>
</tr>
<tr>
<td>2</td>
<td>Ellipsoid DNPs Luciferase</td>
<td>SC Injection</td>
<td>100 µL</td>
</tr>
<tr>
<td>3</td>
<td>Rod DNPs Luciferase</td>
<td>SC Injection</td>
<td>100 µL</td>
</tr>
<tr>
<td>4</td>
<td>RodDNPs Luciferase</td>
<td>Sub-retinal injection</td>
<td>50 µL</td>
</tr>
</tbody>
</table>
DNA Nanoparticles Transfect the **Retina** and **Choroid**

Non Viral-Luciferase, Rabbit CHOROID

Non Viral-Luciferase, Rabbit RETINA

[Graphs showing data for different conditions and treatments]
Study Summary

• Luciferase activity observed in the retina and choroid of ALL eyes that received SC injection of DNPs

• SC injection of luciferase DNPs produced activity comparable to that seen from subretinal injections of luciferase DNPs

• SC injections on DNPs were generally well-tolerated across groups; no significant abnormalities observed on ophthalmic exams or ERGs
The Future of SC Injections of DNA Nanoparticles

• Additional experiments needed
 • Evaluate SC injection in non-human primates
 • Evaluate delivery of a therapeutic transgene

• Why is this important?
 • Safety
 • SC injection of DNPs may address an unmet need in ocular gene delivery
 • Non-immunogenic, potential for repeat doing

 • Efficacy
 • Higher doses may be used to enhance transfection
 • Sub-retinal procedure is 5-10 times more efficient in delivery than intravitreal injections, but has shortcomings that may be overcome with SC injections of DNPs
 • DNPs can transfer large genes which may allow for gene therapy in the most common inherited retinal diseases (IRDs) such as Stargardt disease and Usher syndrome

• SC injections of DNPs offer the potential for a safer and efficient delivery method
THANK YOU