Suprachoroidal delivery for ocular gene therapy: nonclinical experiments evaluating non-viral DNA nanoparticles.

Christine N. Kay, MD
Vitreoretinal Associates
Gainesville, FL
Financial Disclosures

None relevant to this presentation
DNA nanoparticles offer the potential for safe, efficacious, and repeat dosing of ocular gene therapy

Potential advantages:
• Unlike AAV (payload capacity of 5 kb), can transfer large genes (up to ~20 kb)
• Safety: Non-immunogenic, without viral capsid proteins or pre-existing immunity.
 • Potential for repeat and greater dosing
• Efficacy: in numerous ocular animal model, higher doses may be used to enhance transfection
• Manufacturing, Simpler than viral-based gene therapy

Potential disadvantages:
• Durability: May not represent one time therapy

DNA nanoparticle Gene Therapy: Well established literature

Comparative Analysis of DNA Nanoparticles and AAVs for Ocular Gene Delivery

DNA nanoparticles are safe and nontoxic in non-human primates

Lentiviral Vector Gene Transfer of Endostatin/Angiostatin for Macular Degeneration (GEM) Study

AAV8-antivegfr5 Ocular Gene Transfer for Neovascular Age-Related Macular Degeneration

Development of an inducible anti-VEGF:AAV gene therapy strategy for the treatment of wet AMD
Suprachoroidal (SC) injection offers the potential for safe, targeted, and efficient ocular gene therapy

- **Targeted treatment** of posterior tissues possible via SC injection
 - Spread of injectate flows circumferentially and posteriorly
- **Safety**
 - Avoids the risks of sub-retinal surgery
 - Does not require detachment of the photoreceptors from the RPEs, without associated risk of iatrogenic injection to already compromised disordered retina
 - SC injection procedure training is minimal
- **Access to care**
 - Does not require specialized gene therapy surgery treatment centers
 - In-office SC injection procedure is less expensive than surgical procedures
 - Procedure time is significantly less than standard sub-retinal procedure
Suprachoroidal Injection of DNPs in Non-Human Primates and Rabbits

Study Objective
- Evaluate the safety, tolerability, and retinal cell transfection following SC injection of DNPs

Design
- Ophthalmic examinations at Day 0, 1, and 7
 - Surface morphology, ocular inflammation, direct and indirect ophthalmoscopy, IOP, ERG
 - Eyes were enucleated at Day 7 and 21
 - Choroid and retina separated and processed for evaluation of luciferase activity

<table>
<thead>
<tr>
<th>Species</th>
<th>Group (n=4)</th>
<th>Test article</th>
<th>Route of Administration</th>
<th>Volume</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>Vehicle</td>
<td>SC Injection</td>
<td>100 µL</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>Ellipsoid DNPs Luciferase</td>
<td>SC Injection</td>
<td>100 µL</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>Rod DNPs Luciferase</td>
<td>SC Injection</td>
<td>100 µL</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>Rod DNPs Luciferase</td>
<td>Sub-retinal injection</td>
<td>50 µL</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>Vehicle</td>
<td>SC Injection</td>
<td>100 µL</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>Ellipsoid DNPs Luciferase</td>
<td>SC Injection</td>
<td>100 µL</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>Rod DNPs Luciferase</td>
<td>SC Injection</td>
<td>100 µL</td>
</tr>
</tbody>
</table>

Ellipsoids
- Colloidally stable DNPs Suspended in Saline
 - 8-10 nm in diameter

Rods
- Colloidally stable DNPs Suspended in Saline
 - 8-10 nm in diameter
NHP: DNA Nanoparticles Transfect RPE + Choroid and Retina

RPE-CHOROID

- Control (Saline)
- Ellipsoid
- Rod
- Ellipsoid
- Rod

Day 8
Day 22

Log (RLU/mg protein)

1-way ANOVA, p<0.0001.
Bonferroni's multiple comparison test: * p<0.05, ** p<0.01, *** p<0.001

RETINA

- Control (Saline)
- Ellipsoid
- Rod
- Ellipsoid
- Rod

Day 8
Day 22

Log (RLU/mg protein)

*

1-way ANOVA, p=0.0088.
Bonferroni's multiple comparison test: * p<0.05, ** p<0.01
Rabbit: DNA Nanoparticles Transfect the RPE + Choroid and Retina

Non Viral-Luciferase, Rabbit CHOROID

Non Viral-Luciferase, Rabbit RETINA
Study Summary

• Luciferase activity observed in the retina and RPE+choroid
• In rabbits, SC injection comparable to subretinal injections of luciferase DNPs produced activity
• SC injections of DNPs were generally well-tolerated across groups in both species

• Safety
 • SC injection of DNPs may address an unmet need in ocular gene delivery
 • Non-immunogenic, potential for repeat dosing

• Efficacy
 • Higher doses may be used to enhance transfection
 • DNPs can transfer large genes which may allow for gene therapy in the most common inherited retinal diseases (IRDs) such as Stargardt disease and Usher syndrome

• SC injections of DNPs offer the potential for a safer and efficient delivery method