Suprachoroidal Delivery of CLS-TA for Uveitic Macular Edema: Results of the Phase 3 PEACHTREE Trial

Christopher R. Henry, MD
Vitreoretinal Surgery and Uveitis
Retina Consultants of Houston
Houston Methodist Hospital
Suprachoroidal Injection for Posterior Segment Disease

Animal model data for suprachoroidal vs. intravitreal injection of TA show:

- Higher amounts of drug in the choroid, RPE cells, and retina
- Lower exposure to the anterior segment

A potentially useful ocular distribution of drug for the treatment of uveitic macular edema
PEACHTREE: Phase 3, Randomized, Controlled, Double-Masked, Multicenter Trial

Visual acuity primary endpoint

Enrollment

N=96

Suprachoroidal CLS-TA

Day 0 → Wk 4 → Wk 8 → Wk 12 → Wk 16 → Wk 20 → Wk 24

Active Arm: Suprachoroidal injection of 4 mg CLS-TA

Control Arm: Sham injection procedure

N=64

Sham

Day 0 → Wk 4 → Wk 8 → Wk 12 → Wk 16 → Wk 20 → Wk 24

Evaluation period – 6 months

Both Arms: Rescue therapy at any time according to pre-specified criteria

Sham
Key Inclusion and Exclusion Criteria

Inclusion

- **Diagnosis of macular edema** with central subfield thickness ≥300 microns
- Noninfectious uveitis of any associated diagnosis/etiology
- Visual acuity: 20/800 to 20/40 (≥5 to ≤70 ETDRS letters)

Exclusion

- Any active ocular disease or infection in the study eye other than uveitis
- Intraocular pressure >22 mmHg or uncontrolled glaucoma
- More than 2 IOP-lowering medications

Subjects could have active or controlled disease at enrollment

ETDRS: Early Treatment Diabetic Retinopathy Study
IOP: intraocular pressure
Baseline Subject Characteristics Were Similar Between Treatment Groups

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>CLS-TA n=96</th>
<th>Control n=64</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gender, n (%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Male</td>
<td>42 (43.8)</td>
<td>30 (46.9)</td>
</tr>
<tr>
<td>Female</td>
<td>54 (56.3)</td>
<td>34 (53.1)</td>
</tr>
<tr>
<td>Age (years), mean (SD)</td>
<td>50.4 (14.2)</td>
<td>50.0 (15.1)</td>
</tr>
<tr>
<td>BCVA, study eye (ETDRS letters)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mean (SD)</td>
<td>54.7 (13.9)</td>
<td>53.5 (12.9)</td>
</tr>
<tr>
<td>Median (range)</td>
<td>57 (9-89)</td>
<td>54 (12-79)</td>
</tr>
<tr>
<td>CST, study eye (μm)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mean (SD)</td>
<td>480.9 (153.2)</td>
<td>525.4 (158.1)</td>
</tr>
<tr>
<td>Median (range)</td>
<td>453 (256-857)</td>
<td>518 (274-971)</td>
</tr>
</tbody>
</table>

CST: central subfield thickness; ETDRS: Early Treatment Diabetic Retinopathy Study
All Anatomic Subtypes Were Enrolled

CLS-TA (N=96)
- Panuveitis: 29.2%
- Posterior: 22.9%
- Intermediate: 35.4%
- Anterior: 28.1%

Control (N=64)
- Panuveitis: 37.5%
- Posterior: 20.3%
- Intermediate: 35.9%
- Anterior: 21.9%
Distribution of Uveitis Diagnosis Was Similar Between Treatment Groups

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>CLS-TA (N=96)</th>
<th>Control (N=64)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>n (%)</td>
<td>n (%)</td>
</tr>
<tr>
<td>Idiopathic</td>
<td>69 (71.9)</td>
<td>44 (68.8)</td>
</tr>
<tr>
<td>Pars planitis</td>
<td>7 (7.3)</td>
<td>4 (6.3)</td>
</tr>
<tr>
<td>Sarcoidosis</td>
<td>4 (4.2)</td>
<td>5 (7.8)</td>
</tr>
<tr>
<td>HLA-B27 related</td>
<td>4 (4.2)</td>
<td>1 (1.6)</td>
</tr>
<tr>
<td>Other</td>
<td>3 (3.1)</td>
<td>1 (1.6)</td>
</tr>
<tr>
<td>Juvenile idiopathic arthritis</td>
<td>2 (2.1)</td>
<td>1 (1.6)</td>
</tr>
<tr>
<td>Vogt-Koyanagi-Harada syndrome</td>
<td>1 (1.0)</td>
<td>2 (3.1)</td>
</tr>
<tr>
<td>Reactive arthritis</td>
<td>2 (2.1)</td>
<td>0</td>
</tr>
<tr>
<td>Birdshot retinochoroidopathy</td>
<td>2 (2.1)</td>
<td>0</td>
</tr>
<tr>
<td>Behçet’s syndrome</td>
<td>1 (1.0)</td>
<td>0</td>
</tr>
</tbody>
</table>
PEACHTREE Met Its Primary Efficacy Endpoint

Subjects gaining ≥15 ETDRS letters from baseline, %

Intention-to-treat population; LOCF imputation. The p-value is based on a Cochran-Mantel-Haenszel test for general association between treatment and response with stratification by country.

ETDRS, Early treatment diabetic retinopathy study; LOCF, last observation carried forward.
Mean Change in BCVA

Improvement From as Early as Week 4 Through Week 24 in the CLS-TA Arm

Mean change at week 24 from baseline in BCVA in ETDRS letters read

<table>
<thead>
<tr>
<th>Observation (week)</th>
<th>CLS-TA (N=96)</th>
<th>Control (N=64)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean change, ETDRS letters</td>
<td>13.8</td>
<td>3.0</td>
</tr>
</tbody>
</table>

p<0.001 for comparison

Mean change at each visit from baseline in BCVA in ETDRS letters read

<table>
<thead>
<tr>
<th>Observation (week)</th>
<th>CLS-TA</th>
<th>Control</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean change, ETDRS letters</td>
<td>9.6</td>
<td>1.3</td>
</tr>
<tr>
<td></td>
<td>11.7</td>
<td>1.7</td>
</tr>
<tr>
<td></td>
<td>11.7</td>
<td>1.6</td>
</tr>
<tr>
<td></td>
<td>12.9</td>
<td>3.0</td>
</tr>
<tr>
<td></td>
<td>12.4</td>
<td>2.8</td>
</tr>
<tr>
<td></td>
<td>13.8</td>
<td>3.0</td>
</tr>
</tbody>
</table>

Δ=10.8
p<0.001

Intention-to-treat population; last observation carried forward imputation.
t-test. Differences between the CLS-TA and control arms were significant at each visit.
BCVA, best corrected visual acuity.
Mean Change in Central Subfield Thickness

Improvement From as Early as Week 4 through Week 24 in CLS-TA Arm

Mean change from baseline at week 24 in central subfield thickness (µm)

- **CLS-TA** (N=96) (BSL 481 µm)
- **Control** (N=64) (BSL 525 µm)

- Mean change, CST
 - CLS-TA: -152.6 µm
 - Control: -17.9 µm

p<0.001 for comparison

Mean change at each visit from baseline in central subfield thickness (µm)

- Observation (week)
- Mean change, CST
 - CLS-TA: -148.5, -145.4, -170.4, -168.0, -152.6 µm
 - Control: -4.2, -25.1, -15.7, -12.7, -10.9, -17.9 µm

Δ=134.7 µm p<0.001

Intention-to-treat population; last observation carried forward imputation. BSL, baseline mean value; CST, central subfield retinal thickness.
Resolution of Macular Edema, CST <300 μm
Additional resolution in CLS-TA group at Week 4, Maintained through Week 24

Intention-to-treat population; last observation carried forward imputation.
Less than 300 microns by SD-OCT
CST, central subfield retinal thickness.
Signs of Inflammation
Resolution of Anterior Chamber Cells
In Subjects With Anterior Chamber Cells at Baseline

Percentage of subjects with resolution at week 24

- CLS-TA (N=50): 72%
- Control (N=23): 17%

p<0.001 for comparison

Percentage of subjects with resolution at each visit from baseline

- CLS-TA:
 - Week 0: 56%
 - Week 4: 66%
 - Week 8: 62%
 - Week 12: 74%
 - Week 16: 78%
 - Week 20: 72%
 - Week 24:

- Control:
 - Week 0: 22%
 - Week 4: 22%
 - Week 8: 26%
 - Week 12: 30%
 - Week 16: 17%
 - Week 20: 17%
 - Week 24:

Δ=55%

p<0.001

Intention-to-treat population: last observation carried forward imputation. The *p*-value is based on a Cochran-Mantel-Haenszel chi-square test for general association stratified by pooled country. Differences between the CLS-TA and control arms were significant at each visit.
Resolution of Anterior Chamber Flare

In Subjects With Anterior Chamber Flare at Baseline

Percentage of subjects with resolution at week 24

- **CLS-TA (N=35)**: 74%
- **Control (N=20)**: 20%

p < 0.001 for comparison

Percentage of subjects with resolution at each visit from baseline

Intention-to-treat population; last observation carried forward imputation. The *p*-value is based on a Cochran-Mantel-Haenszel chi-square test for general association stratified by pooled country. Differences between the CLS-TA and control arms were significant at each visit from week 8.
Resolution of Vitreous Haze

In Subjects With Vitreous Haze at Baseline

Percentage of subjects with resolution at week 24

<table>
<thead>
<tr>
<th></th>
<th>Percent subjects</th>
</tr>
</thead>
<tbody>
<tr>
<td>CLS-TA (N=74)</td>
<td>68%</td>
</tr>
<tr>
<td>Control (N=43)</td>
<td>23%</td>
</tr>
</tbody>
</table>

p<0.001 for comparison

Percentage of subjects with resolution at each visit from baseline

Intention-to-treat population; last observation carried forward imputation. The p-value is based on a Cochran-Mantel-Haenszel chi-square test for general association stratified by pooled country. Differences between the CLS-TA and control arms were significant at each visit.
Kaplan–Meier Analysis: Time to Rescue

- 72% of patients in the control arm required rescue therapy.
- 13% of the patients in the CLS-TA arm required rescue therapy.

Intention-to-treat population
Anatomic location of uveitis
Anatomic location of uveitis

- **Anterior**: Mean change in BCVA = 14.4, p=0.016
- **Intermediate**: Mean change in BCVA = 13.4, p=0.032
- **Posterior**: Mean change in BCVA = 15.6, p=0.005
- **Panuveitis**: Mean change in BCVA = 12.0, p=0.020
Anatomic location of uveitis

![Graph showing mean change in CST (μm) for different anatomic locations of uveitis with p-values for each group: anterior (p=0.229), intermediate (p=0.013), posterior (p=0.021), panuveitis (p=0.002).]
Safety
Safety

Serious AEs
- Three serious AEs, all in CLS-TA arm: none considered treatment-related
 - Two nonocular serious AEs (sialoadenitis, lumbar vertebral fracture)
 - One ocular serious AE (retinal detachment approximately 8 weeks after injection)

<table>
<thead>
<tr>
<th>Ocular AEs in Study Eye</th>
<th>CLS-TA 4.0 mg N=96 n (%)</th>
<th>Control N=64 n (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of subjects with ≥1 ocular AEs</td>
<td>49 (51.0)</td>
<td>37 (57.8)</td>
</tr>
<tr>
<td>Treatment-related ocular AEs</td>
<td>29 (30.2)</td>
<td>8 (12.5)</td>
</tr>
</tbody>
</table>

Most Frequent AEs
- AEs occurring in >5% subjects in the CLS-TA arm were: elevated IOP (11.5%), eye pain (12.5%), cataract (7.3%)

AEs, adverse events.
Elevated IOP Adverse Events

CLS-TA and Control Subjects

<table>
<thead>
<tr>
<th>Type</th>
<th>CLS-TA</th>
<th>Control</th>
</tr>
</thead>
<tbody>
<tr>
<td>11.5%</td>
<td>10/96</td>
<td>1/84</td>
</tr>
</tbody>
</table>

IOP AE Rates Among Controls by Type of Rescue

<table>
<thead>
<tr>
<th>Type</th>
<th>Percent subjects</th>
</tr>
</thead>
<tbody>
<tr>
<td>No Rescue (n=18)</td>
<td>0%</td>
</tr>
<tr>
<td>Other Rescue (n=8)</td>
<td>0%</td>
</tr>
<tr>
<td>Local Corticosteroid Rescue (n=38)</td>
<td>26.3%</td>
</tr>
</tbody>
</table>

“Elevated IOP” includes (a) increased IOP, (b) ocular hypertension, and (c) glaucoma. AE, adverse event; IOP, intraocular pressure.
Summary of AEs of Elevated IOP*

<table>
<thead>
<tr>
<th>IOP-related Outcome</th>
<th>CLS-TA 4.0 mg</th>
<th></th>
<th>Control</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>n=96</td>
<td>n (%)</td>
<td>n=64</td>
<td>n (%)</td>
</tr>
<tr>
<td>IOP elevation ≥10 mmHg above baseline at any visit</td>
<td>9 (9.4)</td>
<td></td>
<td>8 (12.5)</td>
<td></td>
</tr>
<tr>
<td>≥30 mmHg at any visit</td>
<td>5 (5.2)</td>
<td></td>
<td>4 (6.3)</td>
<td></td>
</tr>
<tr>
<td>Given IOP lowering meds</td>
<td>10 (10.4)</td>
<td></td>
<td>9 (14.1)</td>
<td></td>
</tr>
<tr>
<td>Any surgical intervention for an elevated IOP AE</td>
<td>0</td>
<td></td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>All AEs of elevated IOP</td>
<td>11 (11.5)</td>
<td></td>
<td>10 (15.6)</td>
<td></td>
</tr>
</tbody>
</table>

*“Elevated IOP” includes the preferred terms (a) IOP increased, (b) ocular hypertension, and (c) glaucoma.
Cataract Adverse Events

- New or worsening cataracts occurred with similar frequency in the CLS-TA and control groups
- No cataract-related surgeries in this trial

“Cataract” includes (a) cataract, (b) subcapsular cataract, and (c) nuclear cataract.
Case example

46 year old AA male with panuveitis OS

Baseline vision: 20/15 OD, 20/40 OS

Baseline IOP: 9 OD, 14 OS

Anterior Segment: 2+ anterior chamber cells, 2+ flare, posterior synechiae from 4-10, Few brown granulomatous KPs inferior OS

Posterior Segment: 1+ vitreous cells, 1+ vitreous haze, Few inferior snowballs, No chorioretinal lesions OS

“Cataract” includes (a) cataract, (b) cataract subcapsular, and (c) cataract nuclear.
Baseline: 20/40 OS, CST 466, IOP 14
Baseline: 20/40 OS, CST 466, IOP 14
3 months: 20/12.5 OS, CST 315, IOP 10
6 months: 20/12.5 OS, CST 303, IOP 12
6 months: 20/12.5 OS, CST 303, IOP 12
PEACHTREE: Take Home Points

Efficacy

- PEACTHREE Primary endpoint was met, with ~47% of patients gaining ≥15 ETDRS letters.
- Suprachoroidally injected CLS-TA significantly improved vision and macular edema.
- Visual acuity and macular edema improved irrespective of the anatomic location of uveitis.
- The majority of CLS-TA patients with active inflammation at baseline had resolution of anterior chamber cells, anterior chamber flare and vitreous haze.

Safety

Low rates of elevated IOP and cataract
Thank You

Christopher R. Henry, MD
Vitreoretinal Surgery and Uveitis
Retina Consultants of Houston
Houston Methodist Hospital