Suprachoroidal Administration of Small Molecule and Nanoparticle Suspensions: Pre-Clinical Results Correlate to Clinical Trial Outcomes

Mathew MacCumber, MD, PhD1
Thomas Ciulla, MD, MBA2
Viral Kansara, PhD2

1. Illinois Retina Associates, S.C. and Rush University Medical Center; 2. Clearside Biomedical, Inc.
Financial Disclosures

• MM: Consulting Fees - Regeneron, Genentech, Novartis, Allergan, Alimera, Spark, Clearside Biomedical
 Research Grant - Apellis, Adverum, Kodiak, Clearside Biomedical

• TC: Clearside Biomedical - Employee & Shareholder
• VK: Clearside Biomedical - Employee & Shareholder
Injection into the Suprachoroidal Space (SCS)

Suprachoroidal Injection (SCI) with the SCS Microinjector®
Durability in the SCS for particles ranging from the size of small molecule suspensions, to DNA nanoparticles, to AAV

Chorioretinal Selectivity of SCS Administration

SCS Administration of various particle sizes in rabbit model

Fundus Images under Fluorescence in vivo, 60 days post injection

- **1 µm particles**
- **10 µm particles**

Preclinical efficacy corroborated in PEACHTREE Ph 3 trial for small molecule triamcinolone acetonide (TA)

Preclinical

![Graph showing mean Hacket/McDonald ocular scores over time for different treatment groups.]

Clinical Trial

PEACHTREE Met its Primary Endpoint: Efficacy Data

Subjects gaining ≥15 BCVA letters from baseline, %

- CLS-TA (N=96): 46.9%
- Control (N=64): 15.6%

Source: Gilger, et al, Treatment of Acute Posterior Uveitis in a Porcine Model by Injection of Triamcinolone Acetonide into the Suprachoroidal Space Using Microneedles, Physiology and Pharmacology
Preclinical safety & compartmentalization corroborated in PEACHTREE Ph 3 trial for small molecule TA

Values are area under the curve ratios (SCS / IVT) over 91 days in rabbit eyes

- Drug not detected in the aqueous from SCS injection
- 12x Sclera/Choroid/Outer Retina
- 1x Neural Retina
- 0.002x Lens
- 0.03x Iris and Ciliary Body

SCI of TKI (axitinib) and complement inhibitor yielded high and durable drug levels in RPE/choroid/sclera

Drug depot in RPE/choroid/sclera

Rabbit Model

*References for in-vitro IC50 range:
Inlyta, EMA. 2012 May; CHMP assessment report
AMD Vascular Endothelial Growth Factor Treatment Approaches

Current AMD Therapies Predominantly Focus on VEGF-A Blockade, not VEGF Receptors

- Anti-VEGF-A increases VEGF-C\(^1\) & VEGF-D\(^2\)
- Broad VEGF blockade may improve outcomes
- A Phase 2 study yielded better AMD outcomes with anti-VEGF-A,C,D vs anti-VEGF-A

Axitinib Suprachoroidally Injected May Improve Outcomes with Its Broad VEGF Blockade

- Inhibits VEGFR-1, VEGFR-2, VEGFR-3
- Inhibited corneal, retinal, and choroidal angiogenesis in animal models\(^3\)-\(^7\)
- More effective than other TKIs for experimental corneal neovascularization in animal models
- Better ocular cell biocompatibility than other TKIs\(^8\)

Preclinical models demonstrated signs of efficacy with TKI axitinib

In animal models, suprachoroidal axitinib (CLS-AX) treated groups experienced a reduction in severe lesions at Day 21, and significantly reduced vascular leakage.

% Lesions Grade IV Day 21

<table>
<thead>
<tr>
<th></th>
<th>Control</th>
<th>CLS-AX</th>
</tr>
</thead>
<tbody>
<tr>
<td>88.8%</td>
<td>63.3%</td>
<td></td>
</tr>
</tbody>
</table>

*Fisher’s Exact p-value = .0002

NEOVASCIULARIZATION: Leakage

- **Significantly reduced vascular leakage** (marked region represents original lesion area)
- **Increased vascular leakage** (marked region represents lesion area)
Phase 1/2A Trial Design: OASIS Clinical trial

Trial Design
- Open-label study to assess the safety and tolerability of single doses of CLS-AX administered through suprachoroidal injection
- 3 Cohorts of 5 patients each: n=15
- Dose-escalation will begin at 0.03 mg CLS-AX; proceed to next cohort following review by Safety Monitoring Committee

Cohort Enrollment and Treatment

<table>
<thead>
<tr>
<th>Screening</th>
<th>Baseline</th>
<th>Week 4</th>
<th>Week 8</th>
<th>Week 12</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 mg aflibercept dosed at screening (day -28)</td>
<td>CLS-AX dosed at baseline</td>
<td>Aflibercept as needed</td>
<td>Aflibercept as needed</td>
<td></td>
</tr>
</tbody>
</table>

Key Inclusion Criteria
- Active subfoveal choroidal neovascularization secondary to AMD
- Two or more anti-VEGF treatments in the 4 months preceding the screening visit with a meaningful response
- BCVA score of ≥ 20 letters (20/400) and ≤ 75 letters (20/32) with < 5 letters change between screening and baseline to ensure patient stability after anti-VEGF
DNPs offer the potential for safe, efficacious, and repeat dosing ocular gene therapy

Potential Advantages

- **Efficacy**: Demonstrated in numerous ocular animal models
 - Transfer large genes (up to ~20 kb)

- **Safety**: Non-immunogenic, without viral capsid proteins or pre-existing immunity.
 - Potential for repeat dosing
 - Higher doses possible to enhance transfection

Well established literature on DNA nanoparticle gene therapy
Suprachoroidal DNPs demonstrated similar activity to subretinal DNPs

Non Viral-Luciferase, Rabbit CHOROID

Non Viral-Luciferase, Rabbit RETINA

1-way ANOVA, p<0.0001.
Bonferroni’s test: *p<0.05, ** p<0.01, ***p<0.001,
Two Phase 2 Trials Using SCS Microinjector® for delivery of viral vector RX-314

- **RGX-314 for Treatment of wet AMD**
 - Phase 2 AAVIATE trial of suprachoroidal delivery of RGX-314 using SCS Microinjector is ongoing.
 - Initial Safety Data from Cohort 1 expected in early 2021.

- **RGX-314 for Treatment of Diabetic Retinopathy (DR)**
 - Phase 2 ALTITUDE trial of suprachoroidal delivery of RGX-314 using SCS Microinjector is ongoing.
Suprachoroidal delivery of viral-like particle (VLP, AU-011) for choroidal melanoma in Phase 1B/2 Trial

- Suprachoroidal injection of AU-011* resulted in excellent distribution and duration in over 75% of the suprachoroidal space in preclinical models.
- Drug exposure in the SC space lasted for at least 10 days.
- Suprachoroidal injection of AU-011 followed by photoactivation resulted in a robust tumor response in an orthotopic rabbit choroidal melanoma model.

Study results support further evaluation of AU-011 administration directly into the suprachoroidal space as a potential first line treatment for primary choroidal melanoma.

Clinical trial for suprachoroidal delivery of AU-011 ongoing.

* VLP-488 has the same physicochemical characteristics as AU-011. VLP-488 is the same VLP as in AU-011 conjugated to AlexaFluor488.

Suprachoroidal Injection of Small Molecule Suspensions & Nanoparticles

- May provide an office-based method to target pharmacologic agents to the RPE, sclera, choroid, and retina
- Efficacy and safety results in preclinical models corroborated favorable clinical trial results for suprachoroidal delivery of triamcinolone acetonide for ME associated with NIU
- Four clinical trials are currently enrolling that utilize suprachoroidal injection with the SCS Microinjector®
 - Suprachoroidally injected Axitinib for wet AMD
 - Suprachoroidally injected viral vector RX-314 for wet AMD and DR
 - Suprachoroidal injected viral like particle AU-011 for choroidal melanoma

Minimize exposure to non-diseased tissues
Deliver pharmacologic agents to the RPE, sclera, choroid, retina
Thank you